1. Nilai x yang memenuhi persamaan
Belajar bareng pasti lebih happy ! Tersedia kunci jawaban untuk Buku Matematika Sukino Jika ada yang ingin ditanya, comment yap! 🤸♀️ Klik Iklan untuk support Penulisnya yaa~~ Please CLICK the link to support us ! 😘 Thank youuu STAY SAFE ALL :)
Friday, May 31, 2024
Soal Matematika Kelas XII no 1
Thursday, May 9, 2024
Kisi Kisi PAT Matematika Kelas XI no 150
150. Diketahui fungsi 𝑓(𝑥) = −2𝑥 + 2 , 𝑔(𝑥) = √𝑥^2 , dan ℎ(𝑥) = 𝑥^2 + 2𝑥 + 1 . Tentukan (𝑔 ∘ ℎ ∘ 𝑓)(−2) !
a. 22
b. 32
c. 18
d. 17
e. 49
Jawaban :
𝑓(𝑥) = −2𝑥 + 2
𝑔(𝑥) = √𝑥^2
ℎ(𝑥) = 𝑥^2 + 2𝑥 + 1
(𝑔 ∘ ℎ ∘ 𝑓)(−2)
= g (h (f (-2 )))
maka perlu dihitung f(-2) terlebih dahulu
𝑓(-2) = −2(-2) + 2
f(-2) = 4 + 2
f (-2) = 6
selanjutnya,
(𝑔 ∘ ℎ ∘ 𝑓)(−2)
= g (h (f (-2 )))
= g(h (6))
sehingga, perlu dihitung h (6)
ℎ(𝑥) = 𝑥^2 + 2𝑥 + 1
h(6) = 6^2 + 2(6) + 1
h(6) = 36 + 12 + 1
h(6) = 49
selanjutnya,
(𝑔 ∘ ℎ ∘ 𝑓)(−2)
= g (h (f (-2 )))
= g(h (6))
= g(49)
𝑔(𝑥) = √𝑥^2
𝑔(49) = √(49)^2
g(49) = 49
Jawaban : E
Kisi Kisi PAT Matematika Kelas XI no 149
149. Diketahui fungsi f(𝑥) = (1 − 6𝑥) / (1 − 2𝑥) , 𝑔(𝑥) = 𝑥^2 − 3𝑥 + 6 , dan ℎ(𝑥) = 2𝑥 + 3 . Tentukan (ℎ ∘ 𝑔 ∘ 𝑓)(1)
a. 15
b. 25
c. 35
d. 45
e. 55
Jawaban :
f(𝑥) = (1 − 6𝑥) / (1 − 2𝑥)
𝑔(𝑥) = 𝑥^2 − 3𝑥 + 6
ℎ(𝑥) = 2𝑥 + 3
(ℎ ∘ 𝑔 ∘ 𝑓)(1)
= h (g (f (1)))
sehingga perlu dihitung f(1) terlebih dahulu
f(1) = (1 − 6(1)) / (1 − 2(1))
f(1) = (1 - 6) / (1 - 2)
f(1) = - 5 / - 1
f(1) = 5
(ℎ ∘ 𝑔 ∘ 𝑓)(1)
= h (g (f (1)))
= h (g (5))
sehingga perlu dihitung g(5)
𝑔(5) = (5)^2 − 3(5) + 6
g(5) = 25 - 15 + 6
g(5) = 10 + 6
g(5) = 16
selanjutnya,
(ℎ ∘ 𝑔 ∘ 𝑓)(1)
= h (g (f (1)))
= h (g (5))
= h (16)
ℎ(𝑥) = 2𝑥 + 3
h(16) = 2(16) + 3
h(16) = 32 + 3
h(16) = 35
Jawaban : C
Kisi Kisi PAT Matematika Kelas XI no 148
148. Tentukan (ℎ ∘ 𝑔)(−4) dengan 𝑔(𝑥) = √(𝑥^2 + 9) dan ℎ(𝑥) = 𝑥^2 − 2𝑥 + 5 !
a. 15
b. 20
c. 19
d. 12
e. 10
Jawaban :
𝑔(𝑥) = √(𝑥^2 + 9)
ℎ(𝑥) = 𝑥^2 − 2𝑥 + 5
g ( - 4) = √(4^2 + 9)
g (- 4) = √(16 + 9)
g (- 4)= √25
g (- 4) = 5
(ℎ ∘ 𝑔)(−4)
= h (g ( - 4)
= h (5)
= (5)^2 - 2 (5) + 5
= 25 - 10 + 5
= 20
(ℎ ∘ 𝑔)(−4) = 20
Jawaban : B
Wednesday, May 8, 2024
Kisi Kisi PAT Matematika Kelas XI no 147
147. Diketahui 𝑓(𝑥) = 𝑥^2 + 2𝑥 − 3 dan g(𝑥) = 𝑥 + 1 , tentukan (𝑓 ∘ 𝑔)(−4) !
a. -22
b. 3
c. 12
d. 0
e. -13
Jawaban :
𝑓(𝑥) = 𝑥^2 + 2𝑥 − 3
g(𝑥) = 𝑥 + 1
g (- 4) = - 4 + 1
g (4) = - 3
(𝑓 ∘ 𝑔)(−4)
= f (g(-4))
= f (-3)
= (-3)^2 + 2 (-3) - 3
= 9 - 6 - 3
= 9 - 9
= 0
(𝑓 ∘ 𝑔)(−4) = 0
Jawaban : D
Kisi Kisi PAT Matematika Kelas XI no 146
146. Diketahui 𝑓(𝑥) = 2𝑥 − 5 dan g(𝑥) = 𝑥^2 + 4 , tentukan (𝑔 ∘ 𝑓)(3) !
a. 10
b. 15
c. 5
d. 1
e. 0
Jawaban :
𝑓(𝑥) = 2𝑥 − 5
g(𝑥) = 𝑥^2 + 4
f(3) = 2(3) - 5
f(3) = 6 - 5
f(3) = 1
(𝑔 ∘ 𝑓)(3)
= g(f (3))
= g (1)
= (1)^2 + 4
= 1 + 4
= 5
(𝑔 ∘ 𝑓)(3) = 5
Jawaban : C
Kisi Kisi PAT Matematika Kelas XI no 145
145. Diketahui 𝑓(𝑥) = 2𝑥 − 5 dan g(𝑥) = 𝑥^2 + 4 , tentukan (𝑓 ∘ 𝑔)(𝑥)!
a. 𝑥^2 + 3
b. 𝑥^2 − 3
c. 3𝑥^2 + 2
d. 2𝑥^2 − 2
e. 2𝑥^2 + 3
Jawaban :
𝑓(𝑥) = 2𝑥 − 5
g(𝑥) = 𝑥^2 + 4
(𝑓 ∘ 𝑔)(𝑥)
= f (g (x))
= f ( 𝑥^2 + 4 )
= 2 (𝑥^2 + 4) - 5
= 2x^2 + 8 - 5
= 2x^2 + 3
(𝑓 ∘ 𝑔)(𝑥) = 2x^2 + 3
Jawaban : E
Tuesday, May 7, 2024
Kisi Kisi PAT Matematika Kelas XI no 144
144. Diketahui ℎ(𝑥) = (4𝑥 + 2) / (𝑥 + 4) , tentukan invers ℎ−1(𝑥) !
a. ℎ−1(𝑥) = (−4𝑥 + 2) / (𝑥 − 4)
b. ℎ−1(𝑥) = (4𝑥 + 2) / (𝑥 + 4)
c. ℎ−1(𝑥) = (−4𝑥 + 4) / (𝑥 − 2)
d.ℎ−1(𝑥) = (−2𝑥 + 4) / (𝑥 − 4)
e. ℎ−1(𝑥) = (−2𝑥 + 2) / (𝑥 − 2)
Jawaban :
ℎ(𝑥) = (4𝑥 + 2) / (𝑥 + 4)
h(x) berbentuk : (ax + b) / (cx + d)
untuk mencari fungsi inversnya, terdapat cara cepatnya yaitu :
h −1(x) = (- dx + b) / (cx - a)
dalam soal ini,
a = 4
b = 2
c = 1
d = 4
h −1(x) = (-4x + 2) / (x - 4)
Jawaban : A
Kisi Kisi PAT Matematika Kelas XI no 143
143. Tentukan invers dari 𝑓(𝑥) = 8𝑥 + 4 !
a. 𝑓−1(𝑥) = 𝑥 + 4
b. 𝑓−1(𝑥) = (𝑥 − 4) / 8
c. 𝑓−1(𝑥) = 𝑥 − 4
d. 𝑓−1(𝑥) = (𝑥 − 8) / 4
e. 𝑓−1(𝑥) = (−𝑥 − 4) / 8
Jawaban :
𝑓(𝑥) = 8𝑥 + 4
y = 8x + 4
y - 4 = 8x
x = (y - 4) / 8
𝑓−1(y) = (y - 4) / 8
Search This Blog
Soal Matematika Wajib Kelas X no 25 Penilaian Tengah Semester Genap SMA
25. 2x-7 + (3- 5x)... Jawaban:

-
Kunci Jawaban Matematika Wajib PKS Kelas XII Bab 1 Jarak dan Sudut dalam Ruang Matematika Wajib kelas XII LUK 5 6. Panjang rusuk kubu...
-
Soal dan Pembahasan Matematika Materi : Persamaan Lingkaran Kelas XI
-
Soal dan Pembahasan Matematika Materi : Persamaan Lingkaran Kelas XI
Blog Archive
- April 2025 (10)
- March 2025 (12)
- February 2025 (9)
- January 2025 (30)
- December 2024 (35)
- November 2024 (43)
- October 2024 (35)
- September 2024 (1)
- August 2024 (5)
- July 2024 (21)
- June 2024 (18)
- May 2024 (9)
- April 2024 (14)
- March 2024 (92)
- February 2024 (61)
- October 2023 (3)
- September 2023 (16)
- August 2023 (33)
- July 2023 (8)
- June 2023 (4)
- May 2023 (9)
- March 2023 (6)
- February 2023 (8)
- November 2022 (10)
- October 2022 (40)
- September 2022 (35)
- June 2022 (34)
- May 2022 (8)
- April 2022 (11)
- March 2022 (58)
- February 2022 (9)
- January 2022 (3)
- November 2021 (58)
- October 2021 (91)
- September 2021 (65)
- August 2021 (23)
- June 2021 (24)
- May 2021 (51)
- April 2021 (59)
- March 2021 (12)
- February 2021 (34)
- January 2021 (40)
- December 2020 (10)
- August 2020 (2)
- July 2020 (7)
- June 2020 (9)
- May 2020 (3)
- April 2020 (1)
- March 2020 (70)
- February 2020 (89)
- January 2020 (73)
- December 2019 (5)
- November 2019 (66)
- October 2019 (85)
- September 2019 (180)
- August 2019 (230)
- July 2019 (123)
- June 2019 (71)
- May 2019 (81)
- April 2019 (216)
- March 2019 (151)
- February 2019 (39)
- January 2019 (56)
- December 2018 (127)
- November 2018 (20)
- October 2018 (14)
- September 2018 (1)