Matematika Peminatan Sukino Kelas XII
Limit Fungsi Aljabar dan Fungsi Trigonometri
LKS 4
Soal dan Pembahasan Matematika Sukino Peminatan
Bagian B
5. Hitunglah nilai setiap limit berikut.
a. lim x ββ (β(x + 5βx) - β(x - 2βx) )
b. lim x ββ [β((x+ 1) + 6β(x+ 1)+5) - β((x+ 1) - 2β(x+ 1) - 10) ]
c. lim x ββ [β((x+ 6) - 2β(x+ 2)) - β((x+ 4) - 6β(x+ 2)) ]
Jawaban :
a. lim x ββ (β(x + 5βx) - β(x - 2βx) )
a = p = 1 (lihat x)
b = 5
q = -2
karena a = p
Limit = 5- (-2) / 2β1
Limit = 7/2
b. lim x ββ [β((x+ 1) + 6β(x+ 1)+5) - β((x+ 1) - 2β(x+ 1) - 10) ]
a = p =1 (lihat x + 1)
b = 6
q = -2
Limit = 6 - (-2) / 2β1
Limit = 8/2
Limit = 4
c. lim x ββ [β((x+ 6) - 2β(x+ 2)) - β((x+ 4) - 6β(x+ 2)) ]
lim x ββ [β((x+ 2) + 4 - 2β(x+ 2)) - β((x+ 2) + 2 - 6β(x+ 2)) ]
a = p = 1(lihat x + 2)
b = -2
q = -6
Limit = -2 - (-6) / 2β1
Limit = 4/2
Limit = 2
a = p = 1 (lihat x)
b = 5
q = -2
karena a = p
Limit = 5- (-2) / 2β1
Limit = 7/2
b. lim x ββ [β((x+ 1) + 6β(x+ 1)+5) - β((x+ 1) - 2β(x+ 1) - 10) ]
a = p =1 (lihat x + 1)
b = 6
q = -2
Limit = 6 - (-2) / 2β1
Limit = 8/2
Limit = 4
c. lim x ββ [β((x+ 6) - 2β(x+ 2)) - β((x+ 4) - 6β(x+ 2)) ]
lim x ββ [β((x+ 2) + 4 - 2β(x+ 2)) - β((x+ 2) + 2 - 6β(x+ 2)) ]
a = p = 1(lihat x + 2)
b = -2
q = -6
Limit = -2 - (-6) / 2β1
Limit = 4/2
Limit = 2
No comments:
Post a Comment