19. JIka (x1, y1) dan (x2, y2) merupakan solusi dari SPDV :
1/2 (5log x) + 3log √y = 0
xlog 25 - ylog 9 = 1
maka (5log x1x2) - (3log y1y2) = ...
a. 16
b. 12
c. 8
d. 6
e. 4
Jawaban : C
misalkan :
5log x = a, maka xlog 5 = 1/a
3log y = b, maka xlog 3 = 1/b
1/2 (5log x) + 3log √y = 0
1/2 (5log x) + 3log y1/2 = 0
1/2 (5log x) + 1/2 3log y = 0
1/2 5log x = - 1/2 3log y
5log x = - 3log y
a = - b
xlog 25 - ylog 9 = 1
xlog 52- ylog 32 = 1
2 xlog5 - 2 ylog 3 = 1
2 (xlog5 - ylog 3) = 1
xlog5 - ylog 3 = 1/2
1/a - 1/b = 1/2
(b - a) / ab = 1/2
2 (b - a) = ab
masukkan nilai a = - b
2 (b - (-b)) = (-b) .b
2 (2b) = -b2
4b = -b2
b2 + 4b = 0
b (b + 4) = 0
b = 0
atau
b = - 4
untuk b = 0,
3log y = 0
y = 30
y = 1
untuk b = - 4
3log y = - 4
y = 3-4
hitung nilai a = - b
untuk b = 0, a = 0
5log x = 0
x = 50
x = 1
untuk b = - 4, a = 4
5log x = 4
x = 54
nilai dari :
(5log x1x2) - (3log y1y2)
= (5log 1 . 54) - (3log 1 . 3-4)
= 5log 54 - 3log 3-4
= 4 - (- 4)
= 4 + 4
= 8
No comments:
Post a Comment