Buku Sukino
Matematika Peminatan
Kelas XII
Bab Aplikasi Turunan
LKS 2
18. Persamaan garis normal pada kurva f(θ) = cos θ / (1 + sin θ) di titik berabsis θ = π/2 adalah ...
a. y = - (x - π/2)
b. y = -1/2 (x - π/2)
c. y = 1/2 (x - π/2)
d. y = (x - π/2)
e. y = 2 (x - π/2)
Jawaban : E
f(θ) = cos θ / (1 + sin θ)
u = cos θ
u' = - sin θ
v = 1 + sin θ
v' = cos θ
f ' (θ) = (- sin θ . (1 + sin θ) - cos θ . cos θ) / (1 + sin θ)2
f ' (θ) = (- sin θ - sin2 θ - cos2 θ) / (1 + sin θ)2
f ' (θ) = (- sin θ - (sin2 θ + cos2 θ)) / (1 + sin θ)2
f ' (θ) = (- sin θ - 1) / (1 + sin θ)2
f ' (θ) = - (sin θ + 1) / (1 + sin θ)2
f ' (θ) = -1 / (1 + sin θ)
di titik berabsis θ = π/2
f ' (π/2) = -1 / (1 + sin π/2)
f ' (π/2) = -1 / (1 + 1)
f ' (π/2) = -1/2
m = -1/2
gradien garis normal = - 1 / (-1/2) = 2
mencari nilai y bila x = π/2
f(θ) = cos θ / (1 + sin θ)
f(π/2) = cos π/2 / (1 + sin π/2)
f(π/2) = 0 / (1 + 1)
f(π/2) = 0
titik (π/2, 0)
persamaan garis normal :
y - y1 = m (x - x1)
y - 0 = 2 (x - π/2)
y = 2 (x - π/2)
Yuk kunjungi :
https://superdingo.com
Daftar sekarang, GRATIS 50 poin!
kamu bisa tanya langsung soal tugas kamu loh!
>> soal no 19
No comments:
Post a Comment