Matematika Peminatan Sukino Kelas XII
Limit Fungsi Aljabar dan Fungsi Trigonometri
LKS 4
Soal dan Pembahasan Matematika Sukino Peminatan
Bagian B
2. Tentukan nilai setiap limit di bawah ini dengan cara kreatif.
a. lim x →∞ (√(16x2 - 32x + 1) - √(16x2 - 8x + 2) )
b. lim x →∞ [√(2x) + 3 - √(2x2 + x - 9) ]
c. lim x →∞ [√(9x2 + 18x + 7) - 2x + 3)]
d. lim x →∞ [2x - 2 - √(4x2 - 4x + 3)]
Jawaban :
a. lim x →∞ (√(16x2 - 32x + 1) - √(16x2 - 8x + 2) )
a = p = 16
b = -32
q = -8
karena a = p
Limit = (-32 +8)/ 2√16
Limit = -24/8
Limit = -3
b. lim x →∞ [√(2x) + 3 - √(2x2 + x - 9) ]
a = 2
b = 1
Limit = 0 + 3 - (1/2√2)
Limit = 3 - 1/4 √2
c. lim x →∞ [√(9x2 + 18x + 7) - 2x + 3)]
a = 9
b = 18
Limit = 18/ 2√9 - 0 + 3
Limit = 3 + 3
Limit = 6
a = p = 16
b = -32
q = -8
karena a = p
Limit = (-32 +8)/ 2√16
Limit = -24/8
Limit = -3
b. lim x →∞ [√(2x) + 3 - √(2x2 + x - 9) ]
a = 2
b = 1
Limit = 0 + 3 - (1/2√2)
Limit = 3 - 1/4 √2
c. lim x →∞ [√(9x2 + 18x + 7) - 2x + 3)]
a = 9
b = 18
Limit = 18/ 2√9 - 0 + 3
Limit = 3 + 3
Limit = 6
d. lim x →∞ [2x - 2 - √(4x2 - 4x + 3)]
a = 4
b = - 4
Limit = 0 - 2 - (-4/2√4)
Limit = - 2 + 1
Limit = - 1
Limit = (8 - 12)/ 2√4
Limit = -4 /4
Limit = -1
b = - 4
Limit = 0 - 2 - (-4/2√4)
Limit = - 2 + 1
Limit = - 1
Limit = (8 - 12)/ 2√4
Limit = -4 /4
Limit = -1
>> soal no 3
No comments:
Post a Comment