Matematika Peminatan Sukino Kelas XII
Limit Fungsi Aljabar dan Fungsi Trigonometri
LKS 4
Soal dan Pembahasan Matematika Sukino Peminatan
Bagian B
2. Tentukan nilai setiap limit di bawah ini dengan cara kreatif.
a. lim x ββ (β(16x2 - 32x + 1) - β(16x2 - 8x + 2) )
b. lim x ββ [β(2x) + 3 - β(2x2 + x - 9) ]
c. lim x ββ [β(9x2 + 18x + 7) - 2x + 3)]
d. lim x ββ [2x - 2 - β(4x2 - 4x + 3)]
Jawaban :
a. lim x ββ (β(16x2 - 32x + 1) - β(16x2 - 8x + 2) )
a = p = 16
b = -32
q = -8
karena a = p
Limit = (-32 +8)/ 2β16
Limit = -24/8
Limit = -3
b. lim x ββ [β(2x) + 3 - β(2x2 + x - 9) ]
a = 2
b = 1
Limit = 0 + 3 - (1/2β2)
Limit = 3 - 1/4 β2
c. lim x ββ [β(9x2 + 18x + 7) - 2x + 3)]
a = 9
b = 18
Limit = 18/ 2β9 - 0 + 3
Limit = 3 + 3
Limit = 6
a = p = 16
b = -32
q = -8
karena a = p
Limit = (-32 +8)/ 2β16
Limit = -24/8
Limit = -3
b. lim x ββ [β(2x) + 3 - β(2x2 + x - 9) ]
a = 2
b = 1
Limit = 0 + 3 - (1/2β2)
Limit = 3 - 1/4 β2
c. lim x ββ [β(9x2 + 18x + 7) - 2x + 3)]
a = 9
b = 18
Limit = 18/ 2β9 - 0 + 3
Limit = 3 + 3
Limit = 6
d. lim x ββ [2x - 2 - β(4x2 - 4x + 3)]
a = 4
b = - 4
Limit = 0 - 2 - (-4/2β4)
Limit = - 2 + 1
Limit = - 1
Limit = (8 - 12)/ 2β4
Limit = -4 /4
Limit = -1
b = - 4
Limit = 0 - 2 - (-4/2β4)
Limit = - 2 + 1
Limit = - 1
Limit = (8 - 12)/ 2β4
Limit = -4 /4
Limit = -1
>> soal no 3
No comments:
Post a Comment