15. Jika a dan b adalah akar-akar persamaan 55log (4x2 + 3) + 42log (x2 - 1) - 39 = 0 , maka a + b = ...
a. 5
b. √7 + √5
c. 2
d. 0
e. - 2
Jawaban : D
55log (4x2 + 3) + 42log (x2 - 1) - 39 = 0
55log (4x2 + 3) + 222log (x2 - 1) - 39 = 0
4x2 + 3 + 22log (x2 - 1)2- 39 = 0
4x2 + 3 + 22log (x2 - 1)2- 39 = 0
4x2 + 3 + (x2- 1)2 - 39 = 0
4x2 + 3 + x4- 2x2 + 1 - 39 = 0
x4 + 2x2 - 35 = 0
(x2 - 5) (x2 + 7) = 0
maka
x2 = 5
x = ±√5
x2 = - 7
x = √(-7) ~ tidak rasional
maka x1 = √5 dan x2 = - √5
a + b = x1 + x2 = √5 - √5 = 0
No comments:
Post a Comment