4. Carilah nilai x (dengan asumsi a > b > 0) yang memenuhi persamaan :
(a4 - 2a2b2 + b4)x - 1 = (a - b)2x(a + b)
Jawaban :
(a4 - 2a2b2 + b4)x - 1 = (a - b)2x(a + b)
berikan log di kedua sisi :
log (a4 - 2a2b2 + b4)x - 1 = log ((a - b)2x(a + b))
(x - 1) log (a4 - 2a2b2 + b4) = log (a - b)2x + log(a + b)
(x - 1) log (a2 - b2)2 = 2x log (a - b) + log(a + b)
2 (x - 1) log (a2 - b2) = 2x log (a - b) + log(a + b)
2 (x - 1) log (a - b)(a+b) = 2x log (a - b) + log(a + b)
(2x - 2) (log (a - b) + log (a + b)) = 2x log (a - b) + log(a + b)
2x log (a - b) + 2x log (a + b) - 2 log (a - b) - 2 log (a + b) = 2x log (a - b) + log (a + b)
2x log (a - b) + 2x log (a + b) - 2 log (a - b) - 2 log (a + b) = 2x log (a - b) + log (a + b)
2x log (a + b) - 2 log (a - b) - 3 log (a + b) = 0
(2x - 3) log (a + b) = 2 log (a - b)
2x - 3 = 2 log (a - b) / log (a + b)
2x = (2 log (a - b) / log (a + b)) + 3
x = ((2 log (a - b) / log (a + b)) + 3) / 2
No comments:
Post a Comment